
Installing and Building Relational
DataScript (rds)

Harald Wellmann <HWellmann@harmanbecker.com>

Revision History
Revision 0.1 28 September 2006

Initial version describing the build process.
Revision 0.2 3 December 2006

Installation description added. Updated the Building from Source section.
Revision 0.3 2 February 2007

Corrected Jar files for Ant build. Additions for Windows XP. Corrected SVN
repository URL.

Revision 0.4 8 February 2007

Changes for Java 1.6.0. Added -doc option.
Revision 0.5 23 May 2007

Java 1.6.0 is now default. Adapted to rds 0.8. New command line options.
Renamed dstools-antlr to rds. Hints on Linux support. Remark on Eclipse

dependency.
Revision 0.6 28 Jun 2007

Added new options -ext and -xml.
Revision 0.7 21 Sep 2007

Adapted to rds 0.14. JET is no longer used. Support for Eclipse 3.3 and
Linux.

Revision 0.8 29 November 2007

Adapted to rds 0.18. -ext option dropped. -java_e option documented. New
section on stand-alone Ant build.

Table of Contents
1. Introduction ...2

1.1.Purpose ...2
1.2. Package Overview ... 2
1.3. Platform Support .. 2

2. Installing and Running .. 2
3. Building from Source .. 4

3.1. Stand-alone Ant Build .. 4
3.2. Eclipse Build .. 4

1

1. Introduction

1.1. Purpose

This is a short guide for installing and running the DataScript tools, for getting the
source from a release package or from Subversion and for building the tools from
source.

1.2. Package Overview

This guide relates to the packages available from the dstools

[http://dstools.sourceforge.net] project at Sourceforge. There are the following
packages:

• rds-bin: Binary distribution of Relational DataScript, our current baseline ver-
sion for a DataScript parser, including relational extensions and HTML genera-
tion.

• rds-src: The source package corresponding to rds-bin.

• dstools-bin: Binary distribution of a DataScript parser and code generator, di-
rectly derived from the reference implementation of Godmar Back (obsolete).
This was the starting point of the dstools project, which has now been super-
seded by rds.

• dstools-src: The source package corresponding to dstools-bin.

1.3. Platform Support

The development platform for DataScript is Windows XP, but the packages should
run on all platforms supporting a Java SE 1.6.0. To use the relational extensions,
you need a JDBC driver for SQLite which depends on a platform-specific native li-
brary. rds itself, however, does not use native code. For convenience, a JDBC
driver and the native libraries for Windows and Linux are included in the rds-bin

and rds-source packages.

This guide uses Windows syntax for command lines and path names, trusting in the
ability of Unix users to silently make the necessary changes.

Java versions 1.5.x or earlier are not compatible due to the use of generics and of
java.util.ServiceLoader in the rds implementation. The JAR files provided in the
rds-bin package are compiled with Java SE 1.6.0.

rds also runs under Linux (tested on openSuSE 10.2).

2. Installing and Running

To install the DataScript tools, download the rds-bin package and unzip it to an in-
stallation directory %RDS_HOME%. rds is implemented in Java. You need a Java VM
1.6.0 or higher to run it.

Installing and Building Relational
DataScript (rds)

2

http://dstools.sourceforge.net

rds.jar is an executable Java Archive which can be run by

java -jar %RDS_HOME%\rds.jar
[-c] [-doc] [-pkg <output package>] [-xml [<file name>]]
[-java_e]
[-out <output path>] [-src <source path>]
<input file>

<input file> is an absolute or relative file name for the top-level DataScript pack-
age to be parsed. If this package contains imports, e.g. import foo.bar.bla.*, rds

will convert this package name to a relative path name and try to read the imported
package from foo\bar\bla.ds.

The -src option defines the root directory for the input file and all imported pack-
ages. If this option is missing, the default value is the current working directory.
Example: If the source path is C:\datascript and the input file is com\acme\foo.ds,
rds will try parsing C:\datascript\com\acme\foo.ds. If foo.ds contains the declaration
import com.acme.bar.*, rds will try parsing C:\datascript\com\acme\bar.ds.

Currently, only one source directory can be specified. A list of directories as in the
Java CLASSPATH is not supported.

Similarly, the -out option defines the root directory for the generated Java source
files. Specifying -out C:\java in our example, we will find the generated code in
C:\java\com\acme\foo and C:\java\com\acme\bar.

The -pkg option specifies the Java package name for types that do not belong to a
DataScript package. The files will be created in a subdirectory <output package>
of the output path. Any DataScript source file should contain a package declaration,
so this option is rather obsolete.

If the -doc option is present, HTML documentation will be generated into a subdi-
rectory html of the current working directory.

If the -xml option is present, rds will dump an XML representation of the syntax
tree of all input files to <output path>\datascript.xml. The default name of this
output file can be overridden by supplying a file name argument to the -xml option.

If the -c option is present, rds checks the structure of its internal syntax tree, which
may be useful for rds devlopers, but certainly not for rds users.

If the -java_e option is present, the equals() methods generated by the Java exten-
sion will throw an exception instead of returning false when the argument is not
equal. This is mainly intended as a debugging aid for easier detection of a mis-
match in a complex type hierarchy.

The -ext option specifies the path for rds extension libraries. rds will load and exe-
cute all extensions in this directory. The default value of this option is ext. If you
do not run rds from %RDS_HOME%, you will have to set -ext explicitly. Each code gen-
erator (for Java, HTML, XML and optionally C++) is implemented as an extension.
If rds cannot find any extensions, it will not do anything except parsing the input.

The Java code generated by rds depends on the classes contained in
rds-runtime.jar. To use rds-generated code in some other project, you will have to

Installing and Building Relational
DataScript (rds)

3

add rds-runtime.jar to its class path or to include the classes from this JAR into
some other JAR of your project.

3. Building from Source

rds supports stand-alone Ant builds or builds within Eclipse 3.3 where Ant cooper-
ates with the Eclipse Java builder. If you know what you are doing, you will be able
to build rds in other environments, but these two options are the only ones that the
authors will document and support.

The following instructions refer to the rds-src package. For the dstools-src pack-
age, some path and target names need to be adapted.

3.1. Stand-alone Ant Build

Using any Subversion client, fetch the rds sources to your local workspace. From
the root of this workspace, invoke ant as follows:

ant -lib lib [target]

The default Ant target is jar. Running this target will build the rds JARs and their
dependencies in build\jar.

Target cleanall cleans the results of the build. Target test.run runs the JUnit test
suite for rds.

3.2. Eclipse Build

3.2.1. Installing Eclipse

• Install JDK 1.6.0 from http://java.sun.com.

• Install Eclipse 3.3 from http://www.eclipse.org.

• Start Eclipse and set the proxy options in Window | Preferences | Install/Up-
date.

• Select Window | Preferences | Java | Installed JREs and make sure that your
JDK 1.6.0 VM is listed there.

3.2.2. Installing the Subclipse plugin

Subclipse is a Subversion client plugin for Eclipse. Using this plugin, you can di-
rectly access Subversion repositories from Eclipse. This step is recommended if
you wish to build rds directly from a given revision in the Subversion repository.
Subclipse is not required for building rds from a source package.

• Goto Help | Software Updates | Find and Install. Select Search for new fea-
tures to install and click Next.

Installing and Building Relational
DataScript (rds)

4

• Click on New Remote Site... Enter name Subclipse and URL
http://subclipse.tigris.org/update_1.0.x.

• Select the Subclipse Site and click Finish. The Search Results should display a
feature named Subclipse.

• Select the Subclipse feature and click Next. Accept the license terms and click
Next. Click Finish.

• There will be a warning You are about to install an unsigned feature. Simply
click Install.

• You will be prompted to restart the workbench. Click Yes.

• Select Window | Preferences | Team | SVN and activate SVN Interface
SVNKit (Pure Java).

• Select Window | Open Perspective | Other... | SVN Repository Exploring.

• Select Window | Show View | SVN Repository.

• If you are forced to use a proxy for HTTP and HTTPS, you have to edit a con-
figuration file so that Subversion will use your proxy. Using any text editor,
open the file servers in the folder %APPDATA%\Subversion. (%APPDATA% is a Windows
environment variable referring to a folder with user-dependent application set-
tings, which translates to something like C:\Dokumente und Einstellun-

gen\HWellmann\Anwendungsdaten.) If this folder does not exist, make sure you did
not miss any of the preceding steps. The folder gets created when you first open
the SVN Repository view.

Go to the [global] section at the end of the file, uncomment and edit the lines
http-proxy-host and http-proxy-port to reflect the proxy settings at your site.

3.2.3. Creating a local project from the Subversion repository

• In Eclipse, go to the SVN Repository view in the SVN Repository Exploring
perspective.

• Select New | Repository Location from the context menu.

• Fill in the URL https://dstools.svn.sourceforge.net/svnroot/dstools. Click
Finish.

• When prompted for accepting a digital certificate, click Accept Permanently.

• Expand the repository tree and select the subnode trunk/rds.

• Select Checkout... from the context menu of this node.

• Enter a project name. If you are expecting to work on multiple versions in par-
allel (e.g. trunk and development), make sure to select a meaningful name, e.g.

Installing and Building Relational
DataScript (rds)

5

rds-trunk. Click Finish.

3.2.4. Repository Structure

Following Subversion conventions, the repository has the following folders:

• branches: Development branches for tasks that should not interfer with main-
line development on the trunk.

• tags: Release tags. To create a release, a given version of a trunk subfolder is
simply copied to a new subfolder of the tags folder.

• trunk: The main development line.

The trunk has the several subfolders or packages:

• dstools: Sources for the dstools-src package (obsolete).

• rds: Sources for the rds-src package.

• www: Content of the project homepage [http://dstools.sourceforge.net]. Thanks to
a cron job running on the Sourceforge server, any commits to this folder will be
visible on the homepage within an hour.

3.2.5. Setting up the project properties

• Switch to the Java perspective and select your new project rds-trunk.

• Select the Ant build file build.xml from the root directory and open Run As | 2
Ant Build... from the context menu. This will open the External tools dialog.

• Select the Refresh tab and activate the checkbox Refresh resources upon
completion and select The project containing the selected resource.

• Select the Build tab and deactivate Build before launch.

• Select the Classpath tab and the User Entries tree root. and click Add JARs...
Add lib/junit.jar and lib/antlr.jar from your project rds-trunk.

• Select the JRE tab and activate the radiobutton Separate JRE. Make sure to
select a 1.6.0 JRE. Using a separate JRE ensures that stand-alone Ant builds
from the command line will also work. (This is a new feature of rds 0.14. Be-
fore, due to dependencies on Eclipse JET templates, it was required to run Ant
in the Eclipse VM.)

• Click Apply and Close.

• Select Window | Show View | Ant.

Installing and Building Relational
DataScript (rds)

6

http://dstools.sourceforge.net
http://dstools.sourceforge.net

• Goto the Ant view and select Add Buildfiles... from the context menu.

• Select rds-trunk/build.xml and click OK.

3.2.6. Building the rds project

Go to the Ant view, open the rds node and double-click on the compile target. This
will run an Ant build that writes diagnostic messages to a console tab of the Eclipse
workbench. For a stand-alone Ant build from the command line, simply invoke ant

in the project root directory.

The build produces class files in build/classes. To build an executable JAR file
rds.jar in build/jar, use the jar target. This JAR file depends on rds-runtime.jar,

antlr.jar, commons-cli-1.1.jar, freemarker.jar. To do anything useful with rds,
you also need (some of) the extensions rds_javaExtension.jar,

rds_htmlExtension.jar, rds_xmlExtension.jar which will be located in the build\jar

folder after the build.

The test.run target builds and runs JUnit tests for the project.

Installing and Building Relational
DataScript (rds)

7

	Installing and Building Relational DataScript (rds)
	Table of Contents
	1. Introduction
	1.1. Purpose
	1.2. Package Overview
	1.3. Platform Support

	2. Installing and Running
	3. Building from Source
	3.1. Stand-alone Ant Build
	3.2. Eclipse Build
	3.2.1. Installing Eclipse
	3.2.2. Installing the Subclipse plugin
	3.2.3. Creating a local project from the Subversion repository
	3.2.4. Repository Structure
	3.2.5. Setting up the project properties
	3.2.6. Building the rds project

