
DataScript Language Overview
Harald Wellmann <HWellmann@harmanbecker.com>

Revision History
Revision 0.1 20 July 2006

Initial version.
Revision 0.2 16 November 2006

Added section on Comments.
Revision 0.3 3 December 2006

Added section on Packages and Imports.
Revision 0.4 11 January 2007

Added section on Subtypes.
Revision 0.5 23 May 2007

More details on packages. Scope of enum items changed from global to lo-
cal. More background in introduction.

Revision 0.6 28 June 2007

New sum operator. Functions. New section on Relational Extensions.
Revision 0.7 29 November 2007

New choice type. Functions may return compound types. Explicit parame-
ters. bitsizeof operator. align(n) modifier. UTF-8 string encoding.

Table of Contents
1. Introduction ...2

1.1.Motivation ..2
1.2. History and Background .. 2

2.Literals ..3
3. Base Types .. 4

3.1. Integer Base Types ... 4
3.2. Bit Field Types ... 4
3.3. String Types ... 4

4. Enumeration Types ... 4
5. Compound Types .. 5

5.1. Sequence Types ... 5
5.2. Union Types ... 5
5.3. Choice Types ... 6
5.4.Constraints ...7
5.5. Optional Members ... 7
5.6.Functions ..7

6. Array Types .. 8
6.1. Fixed and Variable Length Arrays ... 8

1

6.2. Implicit Length Arrays ... 8
7. Labels, Offsets and Alignment ... 8

7.1. Labels and Byte Offsets ... 8
7.2. Alignment and Padding .. 9

8.Expressions ...9
8.1. Binary Operators .. 10
8.2. Unary Operators ... 10
8.3. Ternary Operators .. 11
8.4. Operator Precedence .. 12

9. Nested Types ... 12
10. Member Access and Contained Types .. 13
11. Parameterized Types ... 14
12.Subtypes ..15
13.Comments ...15

13.1. Standard Comments ... 15
13.2. Documentation Comments ... 16

14. Packages and Imports ... 16
14.1. Type Name Visibility ... 17
14.2. Packages and Files ... 17

15. Relational Extensions .. 18
15.1.Motivation ..18
15.2. SQL Tables .. 18
15.3. SQL Databases ... 20
15.4. SQL Integers .. 20

References ...20

1. Introduction

1.1. Motivation

There are dozens of languages for modelling abstract datatypes. For some of these,
the binary representation of the defined types is implementation dependent and of
no concern. Others do provide a binary encoding, but there is usually no way to
retrofit an abstract specification to an existing binary format.

DataScript is a formal language for modelling binary datatypes, bitstreams or file
formats. Using a formal language for defining such binary datatypes resolves all
ambiguities typically found in textual or tabular specifications.

In addition, one can automatically generate encoders and decoders for a given bi-
nary format from such a formal specification, so that application developers do not
have to worry about serialization and can focus on application logic instead.

The present document describes a DataScript dialect supported by our implementa-
tion called rds (short for Relational DataScript), which is available from Source-
Forge [rds] under a BSD License. This Language Overview is more of a User's
Manual than a formal language specification.

1.2. History and Background

DataScript was designed by Godmar Back [Back]. His reference implementation of

DataScript Language Overview

2

a DataScript compiler also includes a Java code generator producing Java classes
which are able to read and write a binary stream that complies with a DataScript
specification.

rds and the DataScript dialect defined in this document are a spin-off of the Physi-
cal Storage Format Standardization Initiative (PSI), a joint effort of about 20 part-
ner companies in the automotive industry to standardize a car navigation database
format.

After evaluating different data modelling languages and toolsets, including ASN.1,
CSN.1, UML, XML Schema and others, DataScript was selected by the PSI as the
closest match to our requirements.

While Back's reference implementation [DataScript] provided a great start, we
found that some language extensions were desirable to better support our specific
requirements. For this reason, we branched off our own DataScript Tools or dstools

project from Back's reference implementation.

As a major addition to the DataScript language, we introduced relational exten-
sions, which permit the definition of hybrid data models, where the high-level ac-
cess structures are implemented by relational tables and indices, whereas the bulk
data are stored in single columns as BLOBs with a format defined in DataScript,
hence the name Relational DataScript. rds is currently built on top of the SQLite
embedded database [SQLite].

2. Literals

The DataScript syntax for literal values is similar to the Java syntax. There are no
character literals, only string literals with the usual escape syntax. Integer literals
can use decimal, hexadecimal, octal or binary notation.

Examples:

• Decimal: 100, 4711, 255

• Hexadecimal: 0xCAFEBABE, 0Xff

• Octal: 044, 0377

• Binary: 111b, 110b, 001B

• String: "You"

Hexadecimal digits and the x prefix as well as the b suffix for binary types are case-
insensitive.

String literals correspond to zero-terminated UTF-8-encoded strings. Thus, the lit-
eral "You" corresponds to a sequence of 4 bytes equal to the binary representation of
the integer literal 0x596F7500. Other character encodings (e.g. ISO 8859-1 or UTF-
16) are not supported.

DataScript Language Overview

3

3. Base Types

3.1. Integer Base Types

DataScript supports the following integer base types

• Unsigned Types: uint8, uint16, uint32, uint64

• Signed Types: int8, int16, int32, int64

These types correspond to unsigned or signed integers represented as sequences of
8, 16, 32 or 64 bits, respectively. Negative values are represented in two's comple-
ment, i.e. the hex byte FF is 255 as uint8 or -1 as int8.

The default byte order is big endian. Thus, for multi-byte integers, the most signifi-
cant byte comes first. Within each byte, the most significant bit comes first.

Example: The byte stream 02 01 (hex) interpreted as int16 has the decimal value
513. As a bit stream, this looks like 0000 0010 0000 0001. Bit 0 is 0, bit 15 is 1.

3.2. Bit Field Types

A bit field type is denoted by bit:1, bit:2, ... The colon must be followed by a pos-
itive integer literal, which indicates the length of the type in bits. The length is not
limited. A bit field type corresponds to an unsigned integer of the given length.
Thus, bit:16 and uint16 are equivalent.

Signed bit field types are not supported.

Variable length bit field types can be specified as bit<expr>, where expr is an ex-
pression of integer type to be evaluated at run-time.

3.3. String Types

A string type is denoted by string. It is represented by a sequence of bytes in UTF-
8 encoding, terminated by a zero byte. Thus, the encoded size of a string with n
characters is at least n+1 bytes, and it may even be larger if some of the characters
have a multibyte UTF-8 encoding.

Since DataScript models arbitrary bitstreams, the term byte should not be taken too
literally in this context: A byte in this sense is a group of 8 successive bits, where
the offset of the first bit of each group from the enclosing type or the beginning of
the stream is not necessarily divisible by 8.

4. Enumeration Types

An enumeration type has a base type which is an integer type or a bit field type.
The members of an enumeration have a name and a value which may be assigned
explicitly or implicitly. A member that does not have an initializer gets assigned the
value of its predecessor incremented by 1, or the value 0 if it is the first member.

DataScript Language Overview

4

enum bit:3 Color
{

NONE = 000b,
RED = 010b,
BLUE,
BLACK = 111b

};

In this example, BLUE has the value 3. When decoding a member of type Color, the
decoder will read 3 bits from the stream and report an error when the integer value
of these 3 bits is not one of 0, 2, 3 or 7.

An enumeration type provides its own lexical scope, similar to Java and dissimilar
to C++. The member names must be unique within each enumeration type, but may
be reused in other contexts with different meanings. Referring to the example, any
other enumeration type Foo may also contain a member named NONE.

In expressions outside of the defining type, enumeration members must always be
prefixed by the type name and a dot, e.g. Color.NONE.

5. Compound Types

5.1. Sequence Types

A sequence type is the concatenation of its members. There is no padding or align-
ment between members. Example:

MySequence
{

bit:4 a;
uint8 b;
bit:4 c;

};

This type has a total length of 16 bits or 2 bytes. As a bit stream, bits 0-3 corre-
spond to member a, bits 4-11 represent an unsigned integer b, followed by member
c in bits 12-15. Note that member b overlaps a byte boundary, when the entire type
is byte aligned. But MySequence may also be embedded into another type where it
may not be byte-aligned.

5.2. Union Types

A union type corresponds to exactly one of its members, which are also called
branches.

union VarCoordXY
{

CoordXY8 coord8 : width == 8;
CoordXY16 coord16 : width == 16;
CoordXY24 coord24 : width == 24;
CoordXY16 coord32 : width == 32;

};

In this example, the union VarCoordXY has two branches coord8 and coord16. The syn-
tax of a member definition is the same as in sequence types. However, each mem-
ber should be followed by a constraint. This is a boolean expression introduced by
a colon. The terms involved in the constraint must be visible in the scope of the
current type at compile time and must have been decoded at runtime before enter-

DataScript Language Overview

5

ing the branch.

The decoding semantics of a union type is a trial-and-error method. The decoder
tries to decode the first branch. If a constraint fails, it proceeds with the second
branch, and so on. If all branches fail, a decoder error is reported for the union type.

A branch without constraints will never fail, so any following branches will never
be matched. This can be used to express a default branch of a union, which should
be the last member.

When all constraints of a union depend on the same member, a choice type is usu-
ally more convenient.

5.3. Choice Types

A choice type is a shorthand notation for a union where all constraints compare a
given member or parameter to one or more constant values.

choice VarCoordXY on Coord.width
{

case 8: CoordXY8 coord8;
case 16: CoordXY16 coord16;
case 24: CoordXY24 coord24;
case 32: CoordXY32 coord32;

};

A choice type depends on a selector expression following the on keyword. Each
branch of the choice type is preceded by one or more case labels with a literal
value. After evaluating the selector expression, the decoder will directly select the
branch labelled with a literal value equal to the selector value. This is more effi-
cient than the trial-and-error method applied to union types. Loosely speaking, a
union type corresponds to a chain of if ... else if ... else if ... else state-
ments, whereas a choice type is equivalent to a single switch statement.

In the example above, the selector expression refers to a member width of a type
named Coord containing the current choice type (see Section 10, “Member Access
and Contained Types”). Alternatively, the selector may be a parameter of the
choice type (see Section 11, “Parameterized Types”):

choice VarCoordXY(uint8 width) on width
{

case 8: CoordXY8 coord8;
case 16: CoordXY16 coord16;
case 24: CoordXY24 coord24;
case 32: CoordXY32 coord32;

};

A given branch of a choice may have more than one case label. In this case, the
branch is selected when the selector value is equal to any of the case label values. A
choice type may have a default branch which is selected when no case label
matches the selector value. The decoder will throw an exception when there is no
default branch and the selector does not match any case label. Any branch, includ-
ing the default branch, may be empty, with a terminating semicolon directly fol-
lowing the label. It is good practice to insert a comment in this case. When the se-
lector expression has an enumeration type, the enumeration type prefix may be
omitted from the case label literals.

choice AreaAttributes(AreaType type) on type
{

DataScript Language Overview

6

case AreaType.COUNTRY: // The prefix "AreaType." is optional
case STATE:
case CITY:

RegionAttributes regionAttr;

case MAP:
/* empty */ ;

case ROAD:
RoadAttributes roadAttr;

default:
DefaultAttributes defaultAttr;

};

5.4. Constraints

A constraint may be specified for any member of a compound type, not just for se-
lecting a branch of a union. In a sequence type, after decoding a member with a
constraint, the decoder checks the constraint and reports an error if the constraint is
not satisfied.

There is a shorthand syntax for a constraint that tests a field for equality. Type field-
Name = expr; is equivalent to Type fieldName : fieldName == expr;

5.5. Optional Members

A sequence type may have optional members:

ItemCount
{

uint8 count8;
uint16 count16 if count8 == 0xFF;

};

An optional member has an if clause with a boolean expression. The member will
be decoded only if the expression evaluates to true at run-time.

Optional members are a more compact and convenient alternative to a union with
two branches one of which is empty.

5.6. Functions

A compound type may contain functions:

ItemCount
{

uint8 count8;
uint16 count16 if count8 == 0xFF;

function uint16 getValue()
{

return (count8 == 0xFF) ? count16 : count8;
}

};

The return type of a function has to be a standard integer or compound type, and
the function parameter list must be empty. The function body may contain nothing
but a return statement with an expression matching the return type.

Functions are intended to provide no more than simple expression semantics. There
are no plans to add more advanced type conversion or even procedural logic to

DataScript Language Overview

7

DataScript. (For complex logic, it would be more sensible to bind native functions
to DataScript.)

6. Array Types

6.1. Fixed and Variable Length Arrays

An array type is like a sequence of members of the same type. The element type
may be any other type, except an array type. (Two dimensional arrays can be emu-
lated by wrapping the element type in a sequence type.)

The length of an array is the number of elements, which may be fixed (i.e. set at
compile-time) or variable (set at run-time). The elements of an array have indices
ranging from 0 to n-1, where n is the array length.

The notation for array types and elements is similar to C:

ArrayExample
{

uint8 header[256];
int16 numItems;
Element list[numItems];

};

header is a fixed-length array of 256 bytes; list is an array with n elements, where n
is the value of numItems. Individual array elements may be referenced in expressions
with the usual index notation, e.g. list[2] is the third element of the list array.

Constraints on all elements of an array can be expressed with the forall operator,
see Section 8.3.2, “Quantified Expression”.

6.2. Implicit Length Arrays

An array type may have an implicit length indicated by an empty pair of brackets.
In this case, the decoder will continue matching instances of the element type until
a constraints fail or the end of the stream is reached.

ImplicitArray
{

Element list[];
};

The length of the list array can be referenced as lengthof list, see Section 8.2.5,
“lengthof Operator”.

7. Labels, Offsets and Alignment

7.1. Labels and Byte Offsets

The name of a member of integral type may be used as a label on another member
to indicate its byte offset in the enclosing sequence:

Tile
{

TileHeader header;
uint32 stringOffset;

DataScript Language Overview

8

uint16 numFeatures;

stringOffset:
StringTable stringTable;

};

In this example, the byte offset of member stringTable from the beginning of the
Tile instance is given by the value of stringOffset.

The offset of a label is relative to the enclosing sequence by default. If the offset is
relative to some other type containing the current one, this is indicated by a global
label, where the type name is used as a prefix, followed by a double colon:

Database
{

uint32 numTiles;
Tile tiles[numTiles];

};

Tile
{

TileHeader header;
uint32 stringOffset;
uint16 numFeatures;

Database::stringOffset:
StringTable stringTable;

};

7.2. Alignment and Padding

Since labels always refer to byte offsets, a given member within a sequence type
cannot be labelled if it is not guaranteed to be byte-aligned. To overcome this re-
striction, an alignment can be specified explicitly:

Tile
{

TileHeader header;
uint32 stringOffset;
uint16 numBits;
bit:1 bits[numBits];

align(8):
stringOffset:

StringTable stringTable;
};

The align(n) modifier causes the decoder to skip 0..n-1 bits so that the bit offset
from the beginning of the stream is divisible by n. n may be any integer literal.
Alignment modifiers may be used in any sequence type, independent of labels:

AlignmentExample
{

bit:11 a;

align(32):
uint32 b;

};

The size of the AlignmentExample type is 64 bits; without the alignment modifier,
the size would be 43 bits.

8. Expressions

The semantics of expression and the precedence rules for operators is the same as

DataScript Language Overview

9

in Java, except where stated otherwise. DataScript has a number of special opera-
tors sizeof, lengthof, is and forall that will be explained in detail below.

The following Java operators have no counterpart in DataScript: ++, --, >>>, in-

stanceof.

8.1. Binary Operators

8.1.1. Arithmetic Operators

The integer arithmetic operations include + (addition), - (subtraction), *

(multiplication), / (division), % (modulo). In addition, there are the shift operators <<

and >>.

8.1.2. Relational Operators

There are the following relational operators for integer expressions: == (equal to), !=
(not equal to), < (less than), < (less than or equal), > (greater than), >= (greater than
or equal).

The equality operators == and != may be applied to any type

8.1.3. Boolean operators

The boolean operators && (and) and || (or) may be applied to boolean expressions.

8.1.4. Bit operators

The bit operators & (bitwise and), | (bitwise or), ^ (bitwise exclusive or) may be ap-
plied to integer types.

8.1.5. Assignment operators

The assignment operator = and the combined assignment operators *=, /=, %=, +=,

-=, <<=, >>=, &=, ^=, |= have the usual semantics.

8.1.6. Comma operator

The comma operator , evaluates to the expression on the right hand side.

8.1.7. Postfix operators

The postfix operators include [] (array index), () (instantiation with argument list
or function call), and . (member access).

8.2. Unary Operators

8.2.1. Boolean Negation

The negation operator ! is defined for boolean expressions.

8.2.2. Integer operators

DataScript Language Overview

10

For integer expressions, there are + (unary plus), - (unary minus) and ~ (bitwise
complement).

8.2.3. sizeof Operator

The sizeof operator returns the size of a type or an expression in bytes. sizeof may
not be used, when the size in bits is not divisible by 8. When sizeof is applied to a
type name, the size of the type must be fixed and known at compile time. When
sizeof is a applied to a member, it refers to the actual size of the member after de-
coding.

8.2.4. bitsizeof Operator

The bitsizeof operator returns the size of a type or an expression in bits. When bit-

sizeof is applied to a type name, the size of the type must be fixed and known at
compile time. When bitsizeof is a applied to a member, it refers to the actual size
of the member after decoding.

8.2.5. lengthof Operator

The lengthof operator may be applied to an array member and returns the actual
length (i.e. number of elements of an array.Thus, given int32 a[5], the expression
lengthof a evaluates to 5. This is not particularly useful for fixed or variable length
arrays, but it is the only way to refer to the length of an implicit length array.

8.2.6. is Operator

The is operator can be applied to two field names, e.g. x is y. x must be a member
of union type, and y must be one of the branch names of that union. The expression
is true if and only if the decoder has selected branch y for the union.

8.2.7. sum Operator

The sum operator is defined for arrays with integer element type (this includes bit
fields). sum(a) evaluates to the sum of all elements of the array a.

8.3. Ternary Operators

8.3.1. Conditional Expression

A conditional expression booleanExpr ? expr1 : expr2 has the value of expr1 when
booleanExpr is true. Otherwise, it has the value of expr2.

8.3.2. Quantified Expression

A quantified expression has the form forall indexIdentifier in arrayExpr :

booleanExpr. The quantified expression is true if and only if the booleanExpr is
true for all indices of the array. This is only useful when the boolean expression af-
ter the colon involves the array expression and the index identifier from the left
hand side.

Example: The constraint

DataScript Language Overview

11

forall i in a : (i == 0) || (a[i] == a[i-1]+1)

means the elements of a are a sequence of consecutive integers.

8.4. Operator Precedence

In the following list, operators are grouped by precedence in ascending order. Oper-
ators on the bottom line have the highest precedence and are evaluated first. All op-
erators on the same line have the same precedence and are evaluated left to right,
except assignment operators which are evaluated right to left.

• comma

• assignment

• forall

• ? :

• ||

• &&

• |

• ^

• &

• == !=

• < > <= >=

• << >>

• + -

• * / %

• cast

• unary + - ~ !

• sizeof bitsizeof lengthof sum

• [] () . is

9. Nested Types

DataScript syntax permits the definition of nested types, however, it is not easy to
define the semantics of such types in a consistent way. For the time being, the only

DataScript Language Overview

12

supported use is a sequence type definition within a sequence or union field defini-
tion, or a union type definition within a sequence field definition, and even this
should be avoided in favour of a reference to a type defined at global scope. Exam-
ple:

VarCoord
{

uint8 width;
union
{

{
int16 x;
int16 y;

} coord16 : width == 16;
{

int32 x;
int32 y;

} coord32 : width == 32;
} coord;

};

The sequence type VarCoord contains the member coord which has a nested union
type definition. This union type has two members each of which is a nested se-
quence type. All nested types in this example are anonymous, but this it not neces-
sary.

The nested type definitions can be avoided as follows:

VarCoord
{

uint8 width;
Coords coords;

};

union Coords
{

Coord16 coord16 : VarCoord.width == 16;
Coord32 coord32 : VarCoord.width == 32;

};

Coord16
{

int16 x;
int16 y;

};

Coord32
{

int32 x;
int32 y;

};

Note that the constraints for the members of the Coords union refer to the containing
type VarCoord. This is explained in more detail in the following section.

10. Member Access and Contained Types

The dot operator can be used to access a member of a compound type: the expres-
sion f.m is valid if

• f is a field of a compound type C

• The type T of f is a compound type.

• T has a member named m.

DataScript Language Overview

13

The value of the expression f.m can be evaluated at run-time only if the member f
has been evaluated before.

There is a second use of the dot operator involving a type name:

At run-time, each compound type C (except the root type) is contained in a type P
which has a member of type C which is currently being decoded. Within the scope
of C, members of the parent type P may be referenced using the dot operator P.m.

The containment relation is extended recursively: If C is contained in P and P is
contained in Q, then Q.m is a valid expression in the scope of C, denoting the mem-
ber m of the containing type Q.

Example:

Header
{

uint32 version;
uint16 numItems;

};

Message
{

Header h;
Item items[h.numItems];

};

Item
{

uint16 p;
uint32 q if Message.h.version >= 10;

};

Within the scope of the Message type, header refers to the field of type Header, and
header.numItems is a member of that type. Within the scope of the Item type, the
names h or Header are not defined. But Item is contained in the Message type, and h

is a member of Message, so Message.h is a valid expression of type Header, and Mes-

sage.h.version references the version member of the Header type.

11. Parameterized Types

The definition of a compound type may be augmented with a parameter list, similar
to a parameter list in a Java method declaration. Each item of the parameter list has
a type and a name. Within the body of the compound type definition, parameter
names may be used as expressions of the corresponding type.

To use a parameterized type as a field type in another compound type, the parame-
terized type must be instantiated with an argument list matching the types of the pa-
rameter list.

For instance, the previous example can be rewritten as

Header
{

uint32 version;
uint16 numItems;

};

Message
{

DataScript Language Overview

14

Header h;
Item(h) items[h.numItems];

};

Item(Header header)
{

uint16 p;
uint32 q if header.version >= 10;

};

When the element type of an array is parameterized, a special notation can be used
to pass different arguments to each element of the array:

Database
{

uint16 numBlocks;
BlockHeader headers[numBlocks];
Block(headers[blocks$index]) blocks[numBlocks];

};

BlockHeader
{

uint16 numItems;
uint32 offset;

};

Block(BlockHeader header)
{
Database::header.offset:

Item items[header.numItems];
};

blocks$index denotes the current index of the blocks array. The use of this expres-
sion in the argument list for the Block reference indicates that the i-th element of the
blocks array is of type Block instantiated with the i-th header headers[i].

12. Subtypes

A subtype definition defines a new name for a given type, optionally in combina-
tion with a constraint. When the constraint is omitted, this is rather like a typedef in
C:

subtype uint16 BlockIndex;

Block
{

BlockIndex index;
BlockData data;

};

A constraint in the subtype definition is, as usual, a boolean expression introduced
by a colon which may contain the keyword this to refer to the current type:

subtype uint16 BlockIndex : 1 <= this && this < 1024;

Subtype constraints will be checked by the decoder for every occurrence of the
given subtype in a field definition.
Implementation note: Subtypes were introduced in version rds 0.7. Subtype con-
straints are not yet implemented.

13. Comments

13.1. Standard Comments

DataScript Language Overview

15

DataScript supports the standard comment syntax of Java or C++. Single line com-
ments start with // and extend to the end of the line. A comments starting with /* is
terminated by the next occurrence of */, which may or may not be on the same line.

// This is a single-line comment.

/* This is an example
of a multi-line comment
spanning three lines. */

13.2. Documentation Comments

To support inline documentation within a DataScript module, multi-line comments
starting with /** are treated as special documentation comments. The idea and syn-
tax are borrowed from Java(doc). A documentation comment is associated to the
following type or field definition. The documentation comment and the correspond-
ing definition may only be separated by whitespace.

/**
* Traffic flow on links.
*/
enum bit:2 Direction
{

/** No traffic flow allowed */
NONE,
/** Traffic allowed from start to end node. */
POSITIVE,
/** Traffic allowed from end to start node. */
NEGATIVE,
/** Traffic allowed in both directions. */
BOTH

};

The content of a documentation comment, excluding its delimiters, is parsed line
by line. Each line is stripped of leading whitespace, a sequence of asterisks (*), and
more whitespace, if present. After stripping, a comment is composed of one or
more paragraphs, followed by zero or more tag blocks. Paragraphs are separated by
lines.

A line starting with whitespace and a keyword preceded by an at-sign (@) is the be-
ginning of a tag block and also indicates the end of the preceding tag block or com-
ment paragraph.

The only tag currently supported is @param, which is used for documenting the argu-
ments of a parameterized type. The documentation comment should contain one
@param block for each argument in the correct order. The @param tag is followed by
the parameter name and the parameter description. The parameter name must be
enclosed by whitespace.

/**
* This type takes two arguments.
* @param arg1 The first argument.
* @param arg2 The second argument.
*/
ParamType(Foo arg1, Blah arg2)
{

...
};

14. Packages and Imports

DataScript Language Overview

16

14.1. Type Name Visibility

Complex DataScript specifications should be split into multiple packages stored in
separate source files. Every user-defined type belongs to a unique package. For
backward compatibility, there is an unnamed default package used for files without
an explicit package declaration. It is strongly recommended to use a package decla-
ration in each DataScript source file.

A package provides a lexical scope for types. Type names must be unique within a
package, but a given type name may be defined in more than one package. If a type
named Coordinate is defined in package com.acme.foo, the type can be globally iden-
tified by its fully qualified name com.acme.foo.Coordinate, which is obtained by pre-
fixing the type name with the name of the defining package, joined by a dot. An-
other package com.acme.foo.bar may also define a type named Coordinate, having
the fully qualified name com.acme.bar.Coordinate.

By default, types from other packages are not visible in the current package, unless
there are imported explicitly. The package and import syntax and semantics follow
the Java example.

package map;

import common.geometry.*;
import common.featuretypes.*;

Import declarations only have any effect when there is a reference to a type name
not defined in the current package. If package map defines its own Coordinate type,
any reference to that within package map will be resolved to the local type
map.Coordinate, even when one or more of the imported packages also define a type
named Coordinate.

On the other hand, if package map references a Coordinate type but does not define
it, the import declarations are used to resolve that type in one of the imported pack-
ages. In that case, the referenced type must be matched by exactly one of the im-
ported packages. It is obviously a semantic error if the type name is defined in none
of the packages. It is also an error if the type name is defined in two or more of the
imported packages. The order of the import declarations does not matter.

Individual types can be imported using their fully qualified name:

import common.geometry.Geometry;

This single import has precedence over any wildcard import. It prevents an ambigu-
ity with common.featuretypes.Geometry. However, it would be a semantic error to
have another single import of the same type name from a different package.

Implementation note: rds 0.8 supports wildcard imports. Single imports are not yet
implemented but will be added in the near future. There are currently no plans to
implement references to types by their fully qualified names, as this would cause
parser ambiguities with the nested type syntax, see Section 9, “Nested Types”.

14.2. Packages and Files

Package and file names are closely related. Each package must be located in a sepa-

DataScript Language Overview

17

rate file. The above example declares a package map stored in a source file map.ds.
The import declarations direct the parser to locate and parse source files common/

geometry.ds and common/featuretypes.ds.

Imported files may again contain import declarations. Cyclic import relations be-
tween packages are supported but should be avoided. The DataScript parser takes
care to parse each source file just once.

15. Relational Extensions

15.1. Motivation

With its basic language features presented in the previous sections, DataScript pro-
vides a rich language for modelling binary data streams, which are intended to be
parsed sequentially. Direct access to members in the stream is usually not possible,
except for labels specifying the offset of a given member. Navigation between se-
mantically related members at different positions in the stream cannot be expressed
at the stream level. Member insertions or updates are not supported..

All in all, the stream model is not an adequate approach for updatable databases in
the gigabyte size range with lots of internal cross-references where fast access to
individual members is required. In a desktop or server environment, it would be a
natural approach to model such a database as a relational database using SQL.

However, in an embedded environment with limited storage space and processing
resources, a full-fledged relational schema is too heavy-weight. To have the best of
both worlds, i.e. compact storage on the one hand and direct member access includ-
ing updates on the other hand, one can adopt a hybrid data model: In this hybrid
model, the high-level access structures are strictly relational, but most of the low-
level data are stored in binary large objects (BLOBs), where the internal structure
of each BLOB is modelled in DataScript.

For example, we can model a digital map database as a collection of tiles resulting
from a rectangular grid where the tiles are numbered row-wise. The database has a
rather trivial schema:

CREATE TABLE europe (
tileNum INT NOT NULL PRIMARY KEY,
tile BLOB NOT NULL);

Accessing or updating any given tile can simply be delegated to the relational
DBMS. Assuming that the tile BLOBs have a reasonable size, each tile can be de-
coded on the fly to access the individual members within the tile.

For seamless modelling of this hybrid approach, we decided to add relational exten-
sions to DataScript. Some SQL concepts have been translated to DataScript, others
are transparent to DataScript and can be embedded as literal strings to be passed to
the SQL backend. Since it is hard to find a natural border between native
DataScript and embedded SQL, the relational extensions of DataScript should be
regarded as preliminary.

15.2. SQL Tables

DataScript Language Overview

18

15.2.1. Table Types and Instances

An SQL table type is a special case of a compound type, where the members of the
type correspond to the columns of a relational table. Members of integer or string
type translate to the corresponding SQL column types. Members of compound or
array type correspond to BLOB columns. Members of type uint8[n] correspond to
a CHAR(n) type. In Relational DataScript, we can express the above example as fol-
lows:

sql_table GeoMap
{
int32 tileId sql "PRIMARY KEY";
Tile tile;

};

GeoMap europe;
GeoMap america;

It is important to note that the GeoMap is a table type and not a table. A table is de-
fined by the instance europe of type GeoMap. Table types have no direct equivalent in
SQL. They can be used to create tables with identical structure and column names.
Each instance of an sql_table type in DataScript translates to an SQL table where
the table name in SQL is equal to the instance name in DataScript. A member defi-
nition may include an SQL constraint introduced by the keyword sql, followed by a
literal string which is passed transparently to the SQL engine.

Thus, the DataScript instance america gives rise to the following SQL table:

CREATE TABLE america (
tileNum INT NOT NULL PRIMARY KEY,
tile BLOB NOT NULL);

Note: The current definition of sql_tables is not consistent with the abstract data
type and value semantics of plain DataScript. Actually, a table instance is itself a
composite type, represented by a set of rows, and each row item is an instance of
the corresponding column type. To model this more adequately and to avoid em-
bedded SQL for the primary key property, we are planning to change our defini-
tions.
An SQL table is a map container type mapping (primary) keys to values:
sql_map<int32, Tile> GeoMap is a container type. An instance of this type is an
SQL table. A map entry is realized as a table row, corresponding to a key-value
pair. Both key and value may be composed of one or more columns.

15.2.2. Explicit Parameters

An sql_table type differs from a sequence type in that there is no decoder function
that automatically reads all members of a table row. The application has to build its
own queries an invoke a decoder function on each BLOB column explicitly. In the
case where an sql_table member is an instance of a parameterized type, the appli-
cation may want to derive the parameter values from the context (e.g. other table
columns), which is not available to the DataScript decoder. In this case, the type ar-
guments shall be marked with the keyword explicit to indicate that these values
will be set explicitly be the application. Otherwise, the decoder would complain
about not being able to evaluate the type arguments.

Tile(uint8 level, uint8 width)

DataScript Language Overview

19

{
...

};

sql_table TileTable
{

uint32 tileId;
uint32 version;
Tile(explicit level, explicit width) tile;

};

15.3. SQL Databases

Since an SQL table is always contained in an SQL database, we introduce an
sql_database type in DataScript to model databases. sql_table instances may only
be created as members of an sql_database.

sql_table GeoMap
{
// see above

};

sql_database TheWorld
{
GeoMap europe;
GeoMap america;

};

15.4. SQL Integers

Some SQL engines internally always use an integer key or rowid. If the user-de-
fined primary key is an integer, it can be used as row id. If the primary key is com-
posite, it is mapped internally to an integer rowid. To avoid this indirection which
requires additional storage space and increases access times, we introduce SQL in-
teger types. An sql_integer is a sequence type whose members are of integer base
type such that the total size of the sql_integer type does not exceed 64 bits. Mem-
bers of an sql_integer may not be optional.

sql_integer TileId
{
uint8 levelNr;
int32 tileNr;

};

In this example, the value used as SQL key is (levelNr << 32 + (uint32) tileNr).

References
[Back] Godmar Back. DataScript - a Specification and Scripting Language for Bi-

nary Data
[http://www.cs.vt.edu/~gback/papers/gback-datascript-gpce2002.pdf]. Pro-
ceedings of the ACM Conference on Generative Programming and Compo-
nent Engineering Proceedings (GPCE 2002), published as LNCS 2487.
ACM. Pittsburgh, PA. October 2002. pp. 66-77.

[DataScript] DataScript Reference Implementation

DataScript Language Overview

20

http://datascript.sourceforge.net
http://datascript.sourceforge.net
http://datascript.sourceforge.net

[http://datascript.sourceforge.net].

[rds] Relational DataScript [http://dstools.sourceforge.net].

[SQLite] SQLite Embedded Database [http://www.sqlite.org].

DataScript Language Overview

21

http://dstools.sourceforge.net
http://dstools.sourceforge.net
http://www.sqlite.org
http://www.sqlite.org
http://www.sqlite.org

	DataScript Language Overview
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. History and Background

	2. Literals
	3. Base Types
	3.1. Integer Base Types
	3.2. Bit Field Types
	3.3. String Types

	4. Enumeration Types
	5. Compound Types
	5.1. Sequence Types
	5.2. Union Types
	5.3. Choice Types
	5.4. Constraints
	5.5. Optional Members
	5.6. Functions

	6. Array Types
	6.1. Fixed and Variable Length Arrays
	6.2. Implicit Length Arrays

	7. Labels, Offsets and Alignment
	7.1. Labels and Byte Offsets
	7.2. Alignment and Padding

	8. Expressions
	8.1. Binary Operators
	8.1.1. Arithmetic Operators
	8.1.2. Relational Operators
	8.1.3. Boolean operators
	8.1.4. Bit operators
	8.1.5. Assignment operators
	8.1.6. Comma operator
	8.1.7. Postfix operators

	8.2. Unary Operators
	8.2.1. Boolean Negation
	8.2.2. Integer operators
	8.2.3. sizeof Operator
	8.2.4. bitsizeof Operator
	8.2.5. lengthof Operator
	8.2.6. is Operator
	8.2.7. sum Operator

	8.3. Ternary Operators
	8.3.1. Conditional Expression
	8.3.2. Quantified Expression

	8.4. Operator Precedence

	9. Nested Types
	10. Member Access and Contained Types
	11. Parameterized Types
	12. Subtypes
	13. Comments
	13.1. Standard Comments
	13.2. Documentation Comments

	14. Packages and Imports
	14.1. Type Name Visibility
	14.2. Packages and Files

	15. Relational Extensions
	15.1. Motivation
	15.2. SQL Tables
	15.2.1. Table Types and Instances
	15.2.2. Explicit Parameters

	15.3. SQL Databases
	15.4. SQL Integers

	References

