WG1.07.044

PSF Standardisation Initiative

WP1.4 Meeting
6 Nov 2007, Harsum (Tele Atlas)

DataScript Instance Parsing and Data Model Extensions
Harald Wellmann, Harman/Becker

PSF Standardisation Initiative
Page 1



Overview

« Current status

* Points for improvement
« Solution Approach
 Usage Examples

« Proof of Concept Demo

PSF Standardisation Initiative
Page 2



Current Status

A data model is specified in a set of *.ds files

rds Compiler
— parses the DataScript source files
— builds an Abstract Syntax Tree
— traverses the tree to generate target language code
— supported target languages: Java, C++, (HTML, XML)

Generated code:
— one class per DataScript type with methods read(), write(), equals()
— some global classes (e.g. __Visitor) with one method per DataScript type
— generated classes depend on a small run-time library

Decoding DataScript instances:

— constructor or read () method reads the input stream and builds a tree of Java/C++
objects reflecting the DataScript type hierarchy

— application code traverses the object tree

PSF Standardisation Initiative
Page 3



Areas for Improvement

 The DataScript object tree is just an intermediate product. An application
needs to transform members of the tree and copy the content into its own
structures.

* The tree is fairly expensive to build.

 The amount of generated code is very large.
— Java code from PSI trunk: ~450 classes, ~75 000 Lines of Code

 There is no support for forward compatibility:

— "Forward compatibility is the ability of a system to accept input intended for later
versions of itself."

— Assuming model version 1.0 is a subset of model version 1.1, an application built for
model version 1.0 shall be able to work with data stream instances complying to model
version 1.1

PSF Standardisation Initiative
Page 4



Ideas

« Use an event-based instance parsing approach, similar to SAX XML parsers.
« Use permanent IDs on DataScript types and fields.

 Add a compact binary representation of the DataScript model to the
DataScript instance (= PSI database).

— i.e. the database describes its own format

« Generate a list of target language constants for permanent IDs
— Just constants, no logic.
— This is the only generated code required for the application.

- The DataScript runtime library contains a generic instance parser.
— The parser first loads the binary model.
— Using this model representation, the parser knows how to parse an instance of given type
— The parser fires events with a permanent type or field ID for every parsed member.

« Forward compatibility:
— The application simply ignores all events with unknown permanent IDs.

PSF Standardisation Initiative
Page 5



Analogy between DataScript and XML

DataScript XML
Model Source *.ds files *.xsd file (XML Schema
Definition)

Binding of Model | Java Code generated by | JAXB

to Java Target rds

Language

Instance of Model | bitstream *.xml file
Tree-based instances of rds- DOM
Instance generated classes

representation

Event-based new: EDSI SAX
instance (Event-based DataScript
representation Instance Parsing)

PSF Standardisation Initiative
Page 6



Instance Parser Interface

« The application obtains a DataScriptInstanceParser from a factory
object.

« The application sets an instance handler to receive parser events.

« To parse an instance of a given type, invoke parse(typeld) with the type id
of that type.

public interface DataScriptInstanceParser
{
public void setInstanceHandler(DataScriptInstanceHandler handler);

public void parse(int typeId) throws IOException;
}

PSF Standardisation Initiative
Page 7



Instance Handler Interface

e DataScriptInstanceHandler
is the equivalent of a SAX
Content Handler

public interface DataScriptInstanceHandler

e startInstance(), O 3y N
. . public void startInstance(int typeld);
endInStance() indicate the public void endInstance(int typc)a/FI)d);
start and end of the parsing public void startcompound(int fieldrd);
process public void endCompound(int fieldid);
. . public void startArray(int fieldIid);
« Whenever entering or leaving a public void endarray(int fieldid);
non-atomic field, the parser public void startArrayElement(int fieldrd);
ﬁres a start or end public void endArrayElement(int fieldId);
public void integerField(int fieldid, Tong value);
event' public void bigIntegerField(int fieldid, BigInteger value);
hd For atomic fields, the parser public void stringField(int fieldId, String value);
ﬁres an event containing the public void enumField(int fieldid, int value);
h

field value.

PSF Standardisation Initiative
Page 8



DataScript Binary Data Model

. . . Model {
Use DataScrlpF to define a int32 nUMTYpes:
metamodel of itself. Type types [numTypes];
int32 numFields;
« The rds parser builds an Fie;g fields[numFields];
int NUMEXpr;
Abstract Syntax Tree (AST) EXpression expressions [numexpr];
of a DataScript model. int32 numPackages;
?ackage packages[numPackages];
« This AST can be serialized 1nt32 numnames ;
. string names [numNames] ;
to a compact binary form. };
 Thus, for decoding the Field {
model of a DataScript intlé - pos;
. . NameId  name;
instance, all we need is a TypeRef type;
DataScript instance parser. bit:1  isOptional;

bit:1 hasConstraint;
bit:1 hasATignment;
bit:1 hasLabel;

align(8):
ExpressionId optional if isOptional;
ExpressionId constraint if hasConstraint;
int32 alignment if hasAlignment;
ExpressionId Tabel if hasLabel;

}s;

PSF Standardisation Initiative
Page 9



Forward compatibility

 To achieve forward compatibility, type and field IDs used in the binary
DataScript model are required to be invariant.

« The DataScript compiler shall support incremental compilation
— reading the current version of the model in textual form,
— reading the former version of the model in binary form
— and compiling a binary form of the current model, making sure that all types keep their
IDs and that new types receive new IDs.

« This will only work if the model is extended by inserting new elements or
values.

* Reordering or deleting fields is not allowed.

PSF Standardisation Initiative
Page 10



Parsing a future format instance

« When an older application version parses an instance of a hewer format
version, it will receive events with unknown IDs for any format extension.

» For atomic types, the application simply ignores the event.

* For complex types, the application ignores all events between the start and
end events of the given compound type.

« This can be optimized by implementing a setEventsEnabled(boolean)
method in the parser.

PSF Standardisation Initiative
Page 11



Implementation Issues

A proof-of-concept prototype of an EDSI parser in Java is available.
— This parser does not (yet) work with a binary data model.
— It uses rds to parse the DataScript source and works with the AST of rds.

« A full reference implementation shall be provided in Java.
— Useful for speeding up the viewers and diagnosis tools.

« The EDSI design can easily be translated to C++.

 InC, the DataScriptInstanceHand]ler Interface can be emulated by a
structure of function pointers.

PSF Standardisation Initiative
Page 12



Extensions to rds

« DataScript metamodel
* Incremental compilation of binary models
« Code generation for permanent IDs in multiple target languages and idioms.

« The run-time library implementation for a given target language only depends
on the binary DataScript metamodel.

- EDSI run-time libraries can be developed independent of rds.

PSF Standardisation Initiative
Page 13



